Product Code Database
Example Keywords: mobile world -grand $80
barcode-scavenger
   » » Wiki: Solar Mass
Tag Wiki 'Solar Mass'.
Tag

Solar mass
 (

Rank: 100%
Bluestar Bluestar Bluestar Bluestar Blackstar

The solar mass ( ) is a frequently used unit of mass in , equal to approximately . It is approximately equal to the mass of the . It is often used to indicate the masses of other , as well as , , and . More precisely, the mass of the Sun is

The solar mass is about times the (), or times the ().


History of measurement
The value of the gravitational constant was first derived from measurements that were made by in 1798 with a . The value he obtained differs by only 1% from the modern value, but was not as precise.
(2025). 9780813529080, Rutgers University Press.
The diurnal parallax of the Sun was accurately measured during the transits of Venus in 1761 and 1769,
(2025). 9783540631989, Springer.
yielding a value of (9 arcseconds, compared to the present value of ). From the value of the diurnal parallax, one can determine the distance to the Sun from the geometry of Earth.
(2025). 9780750308861, .

The first known estimate of the solar mass was by . In his work Principia (1687), he estimated that the ratio of the mass of Earth to the Sun was about 1:. Later he determined that his value was based upon a faulty value for the solar parallax, which he had used to estimate the distance to the Sun. He corrected his estimated ratio to 1: in the third edition of the Principia. The current value for the solar parallax is smaller still, yielding an estimated mass ratio of 1:.

(2025). 9780521808408, Cambridge University Press.

As a unit of measurement, the solar mass came into use before the astronomical unit and the gravitational constant were precisely measured. This is because the relative mass of another planet in the or the combined mass of two binary stars can be calculated in units of Solar mass directly from the orbital radius and orbital period of the planet or stars using Kepler's third law.


Calculation
The mass of the Sun cannot be measured directly, and is instead calculated from other measurable factors, using the equation for the of a small body orbiting a central mass. Based on the length of the year, the distance from Earth to the Sun (an astronomical unit or au), and the gravitational constant (), the mass of the Sun is given by solving Kepler's third law: M_\odot = \frac{4 \pi^2 \times (1\,\mathrm{au})^3}{G \times (1\,\mathrm{yr})^2}

The value of G is difficult to measure and is only known with limited accuracy ( see Cavendish experiment). The value of G times the mass of an object, called the standard gravitational parameter, is known for the Sun and several planets to a much higher accuracy than G alone. As a result, the solar mass is used as the standard mass in the astronomical system of units.


Variation
The Sun is losing mass because of occurring within its core, leading to the emission of , neutrinos and by the ejection of matter with the . It is expelling about /year. The mass loss rate will increase when the Sun enters the stage, climbing to /year when it reaches the tip of the red-giant branch. This will rise to /year on the asymptotic giant branch, before peaking at a rate of 10−5 to 10−4 /year as the Sun generates a . By the time the Sun becomes a degenerate , it will have lost 46% of its starting mass.

The mass of the Sun has been decreasing since the time it formed. This occurs through two processes in nearly equal amounts. First, in the , hydrogen is converted into helium through , in particular the p–p chain, and this reaction converts some mass into energy in the form of photons. Most of this energy eventually from the Sun. Second, high-energy protons and electrons in the atmosphere of the Sun are ejected directly into outer space as the and coronal mass ejections.

The original mass of the Sun at the time it reached the remains uncertain. The early Sun had much higher mass-loss rates than at present, and it may have lost anywhere from 1–7% of its natal mass over the course of its main-sequence lifetime.


Related units
One solar mass, , can be converted to related units:

It is also frequently useful in general relativity to express mass in units of length or time.

  • G/ c2 ≈ 1.48 km (half the Schwarzschild radius of the Sun)
  • G/ c3 ≈ 4.93 μs

The solar mass parameter ( G), as listed by the IAU Division I Working Group, has the following estimates:

  • (TCG-compatible)
  • (TDB-compatible)


See also
  • Chandrasekhar limit
  • Gaussian gravitational constant
  • Orders of magnitude (mass)

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs